The distribution of thiamin and pyridoxine in the western tropical North Atlantic Amazon River plume
نویسندگان
چکیده
B-vitamins are recognized as essential organic growth factors for many organisms, although little is known about their abundance and distribution in marine ecosystems. Despite their metabolic functions regulating important enzymatic reactions, the methodology to directly measure different B-vitamins in aquatic environments has only recently been developed. Here, we present the first direct measurements of two B-vitamins, thiamin (B1), and pyridoxine (B6), in the Amazon River plume-influenced western tropical North Atlantic (WTNA) Ocean, an area known to have high productivity, carbon (C) and dinitrogen (N2) fixation, and C sequestration. The vitamins B1 and B6 ranged in concentrations from undetectable to 230 and 40 pM, respectively. Significantly higher concentrations were measured in the surface plume water at some stations and variation with salinity was observed, suggesting a possible riverine influence on those B-vitamins. The influences of vitamins B1 and B6 on biogeochemical processes such as C and N2 fixation were investigated using a linear regression model that indicated the availability of those organic factors could affect these rates in the WTNA. In fact, significant increases in C fixation and N2 fixation were observed with increasing vitamin B1 concentrations at some low and mesohaline stations (stations 9.1 and 1; p value <0.017 and <0.03, respectively). N2 fixation was also found to have a significant positive correlation with B1 concentrations at station 1 (p value 0.029), as well as vitamin B6 at station 9.1 (p value <0.017). This work suggests that there can be a dynamic interplay between essential biogeochemical rates (C and N2 fixation) and B-vitamins, drawing attention to potential roles of B-vitamins in ecosystem dynamics, community structure, and global biogeochemistry.
منابع مشابه
Seasonal variations in the Amazon plume-related atmospheric carbon sink
[1] The Amazon River plume is a highly seasonal feature that can reach more than 3000 km across the tropical Atlantic Ocean, and cover 2 million km. Ship observations show that its seasonal presence significantly reduces sea surface salinity and inorganic carbon. In the western tropical North Atlantic during April–May 2003, plume-influenced stations exhibited surface DIC concentrations lowered ...
متن کاملAmazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean.
The fresh water discharged by large rivers such as the Amazon is transported hundreds to thousands of kilometers away from the coast by surface plumes. The nutrients delivered by these river plumes contribute to enhanced primary production in the ocean, and the sinking flux of this new production results in carbon sequestration. Here, we report that the Amazon River plume supports N(2) fixation...
متن کاملAn extensive reef system at the Amazon River mouth
Large rivers create major gaps in reef distribution along tropical shelves. The Amazon River represents 20% of the global riverine discharge to the ocean, generating up to a 1.3 × 10(6)-km(2) plume, and extensive muddy bottoms in the equatorial margin of South America. As a result, a wide area of the tropical North Atlantic is heavily affected in terms of salinity, pH, light penetration, and se...
متن کاملMesozooplankton Graze on Cyanobacteria in the Amazon River Plume and Western Tropical North Atlantic
Diazotrophic cyanobacteria, those capable of fixing di-nitrogen (N2), are considered one of the major sources of new nitrogen (N) in the oligotrophic tropical ocean, but direct incorporation of diazotrophic N into food webs has not been fully examined. In the Amazon River-influenced western tropical North Atlantic (WTNA), diatom diazotroph associations (DDAs) and the filamentous colonial diazot...
متن کاملPCBs and OCPs on a east-to-west transect: the importance of major currents and net volatilization for PCBs in the Atlantic Ocean.
Air-water exchange gradients of selected polychlorinated biphenyl (PCB) congeners across a large section of the tropical Atlantic suggested net volatilization of PCBs to the atmosphere. Only for the higher chlorinated PCB 153 and hexachlorobenzene (HCB) were gradients near equilibrium detected. The use of passive samplers also enabled the detection of dichlorodiphenyltrichloroethane (DDT) and i...
متن کامل